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Abstract  —  A new development in the modeling of planar
inductors is presented. The inductance is evaluated by means
of analytical expressions, taking into account a full geometry
description and the frequency dependence. Moreover, the
model predicts the behavior of the ohmic losses and the
magnetically induced losses. Finally, a new electric model
interpretation of the self-resonant frequency based on
physical assumptions is given.

I. INTRODUCTION

One of the limiting factors in the RFIC design has been
the absence of high performance integrated passive
components, mainly inductors and transformers. However,
new techniques, like silicon Micromachining [1] or the use
of high resistivity substrates, have been proved to increase
the quality factor by removing the substrate losses. In
those cases, metal losses become very important due to the
ohmic and the magnetically induced losses and, then,
copper interconnection becomes a good choice. The
previous techniques can be classified as process
techniques. More recently, there has been developed
successfully new solutions, based on layout optimization
[2], where the designer tries to find the optimum point
between the ohmic and the magnetically induced losses.

Although it is stated that all these techniques have
solved the lack of high performance components, there is
still a major drawback: the lack of accurate lumped
scalable models. Considerable efforts have been carried
out and many of these models can be found in the
literature [3]-[4]-[5]-[6].

However, all of them fail in describing important
frequency phenomena:
1) In spite of their importance, magnetically induced
losses in the substrate and in the metal strips are not
considered and only ohmic losses are taken into account.
Only fitting expressions, for particular cases are found in
the literature [6].
2) The inductance value will depend on the Eddy current
distribution and on the delay of the field through the
structure and no insight has been done in this point.

3) The self-resonance of the component is normally
modeled through the electrical couplings. Some efforts to
calculated this value has been done using numerical
methods [7] or using microstrip line theory [6], but it is
normally left as a fitting parameter.

Another common problem is that models do not allow a
full description of the inductor’s geometry. For instance
the width and the pitch of the planar inductor are fixed for
all the turns; however, in layout optimization techniques
the width and pitch of every turn becomes part of the
design. Models that provide this facility can be found in
[6]-[8].

Nowadays, on the other hand, electromagnetic
simulators are very valuable tools: they can describe the
behavior of a passive component with a very great degree
of accuracy.  With them, it is possible to study the physics
of the previous phenomena. Therefore, in this work, we
present an exhaustive analysis of inductors with the aid of
such tools. The objective is to obtain a scalable physical
lumped model. The model is based on the analysis of any
turn to turn interaction of the coil. Moreover, it also
accounts for the magnetically induced losses and gives a
new insight in the calculation of the self-resonance of the
inductor.

II. ELECTRICAL SCALABLE MODEL

Inductors for RFIC’s design must have equivalent
inductance values in the range of few nH, self resonant
frequencies in the range of several GHz, and high values
of the quality factor.  All these requirements are hard to be
fulfilled in standard silicon technologies. This is mainly
due to the degrading effects related to the substrate.
Therefore, silicon micromachining post-processing seems
to be the best procedure to improve both, self-resonant
frequency and quality factor. Once the substrate effects has
been removed, the simplest model is the one composed by
an inductor connected in series with a resistor and both in
parallel with a capacitor.
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A. Inductor

In the microelectronic technologies, the common chosen
shapes for planar inductors are the square and circular
spirals. One way to compute their inductance value is
through the well-known relation between the energy stored
in the component and the intensity flowing in it:

E = ½ L |I|2 (1)

 The energy can be calculated through the integration of
the term A·J* over the volume defined by the conductor,
where A is the magnetic vector potential and J is the
current distribution. Of course, using electromagnetic
simulators, this can be accomplished for any shape of the
metal strips, for example, the former ones.

When trying to explore analytical formulae, some sort of
symmetry is needed to have a good accuracy. For example,
in the case of circular spirals there still remains some sort
of axial symmetry. Then it is possible to approximate the
geometry to one based on concentric loops.

This last step can be done using two different criteria:
(1) the perimeter of every circular loop must equal the
perimeter of every turn of the spiral; (2) the area of every
loop must be the same as the average area of every spiral
turn. Choosing one or another depends on the geometry,
basically on the value of the pitch. For instance, for small
pitches, the first criterion would give a better description,
while for large pitch it is better the second one. Based on
these assumptions, it should be possible to analyse a
circular spiral inductor with a 2-d axisymmetric model.
The total energy of the system can be calculated through
the next expression:
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where the term Eij is the energy associated to every pair of
loops. In the case of the circular spirals, the integral
evaluation can be solved analytically and the expression
found is the next one:
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where ai and bi are the inner and outer radius respectively
of the loop i. The coefficients C2n+1 are found to be:
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The coefficients D2n+1 are function of the current
distribution in every loop. For a circular loop in the DC
behavior they are:
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The accuracy of these expressions has been corroborated
with magnetic simulations performed with the ANSYS
5.6.2 solver for a family of inductors having a width of
20µm, a pitch of 40µm and an inner radius of 120µm. The
results can be seen in the table I.

Notice that, with this model, it is possible to take into
account the phase shift of the intensity between the loops

and also describes the inductor in a full geometry sense:
inner radius, width and pitch of every turn.

The former procedure can be applied with square
inductors. In that case, it is possible to solve the term Eij
between two strips of metal [6]. It is also possible to find
the inductance value by calculating the flux across the
structure. To make this computation, it is necessary to find
a function Φij that relates the mutual flux between every
pair of turns and then, to add all the possible contributions.
This function is:

where li is the side length of turn i and rj is the ratio
defined by (li -wj /2) / lj, with lj the side length of turn j and
wj its width Also, the formula has been tested with the
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TABLE II
INDUCTANCE VALUE FOR SQUARE SPIRALS

Turns ANSYS MoM Greenhouse Analytical (6)
1 2.18 2.25 2.76 2.18
2 8.31 9.27 8.66 8.15
3 18.81 20.24 17.08 18.63
4 34.59 36.88 27.97 34.52

TABLE I
INDUCTANCE VALUE FOR CIRCULAR INDUCTORS

Turns ANSYS Analytical (3)
1 0.53 0.53
2 1.81 1.81
3 3.96 3.96
4 6.99 7.09
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electromagnetic simulator MoMemtum, with the magnetic
simulator ANSYS and with the Greenhouse method,
shown in the table II. Here, the geometry of the coil is a
strip width of 100µm, a pitch of 200µm and an inner side
of 900µm just to be compared with reference [4].

Fig. 1. Optimized inductor. Notice the different metal strip
width for every turn (L = 32.25; Q = 17; SRF = 2.6 GHz).

Moreover, with the former expression it is possible to
calculate the inductance value of the optimized layout
inductors [4], as the one shown in the Fig. 1. The
experimental value is 32.25 nH and the analytical one is
31.62 nH. It must be stressed that with other methods is
not possible to predict that value for these structures.

B. Resistor

Regarding losses, the series resistance of the inductor
model must account for losses due to conduction current
(Ohmic losses) and losses due to magnetically induced
currents (Eddy currents). Ohmic losses are directly related
to the square resistance of the metal strip and the
inductor’s geometry. Losses due to Eddy currents are
evaluated by the analysis of the current distribution along
the inductor’s structure. From this analysis, in the case of a
constant width inductor, the frequency behavior of the
series resistance can be expressed as follow:
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Where RDC accounts for the ohmic losses, RRF is related to
the magnetically induced losses at very high frequency and
fo is a frequency factor that controls the transition from the
low frequency behavior to the high frequency behavior. It
should be noted that all the parameters from equation (7)
are not fitting parameters: they are derived from physical
assumptions [9]. Once more, electromagnetic simulators

can be used to demonstrate the predicted behavior as it is
shown in the Fig. 2.

Fig. 2. Frequency behavior of the metal losses. It is possible
to distinguish the transient governed by the fo parameter.

C. Capacitor

Regarding the capacitance of the inductors, some efforts
have been done for calculating its value [7], but numerical
techniques (for example, the moment method) are needed
to compute the result. It collects the electrical coupling
between both ports and, therefore, the dependencies on the
technological parameters, basically dielectric constants
and thickness of the substrate layers. This must be adjusted
for each technology and the coupling can be divided in the
electrical interaction of the bridge and the one between
loops.

Normally, the capacitance value is set as a fitting
parameter of the model to match the behavior of the
structure near the self-resonance frequency. However, this
method has some contradictions with physical facts. For
example, when increasing the length of the inductor, the
value of the capacitor must increase also.  The Fig. 3
shows the value of the capacitance as a function of the
number of strips in the inductor. Surprisingly, there are
decreasing zones indicating that the capacitor value has no
physical meaning.

Fig. 3. Fitted value of the capacitance adjusted to self-
resonant frequency as a function of the number of turns.
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To explain this fact, let’s suppose that there is a phase
shift between the current in the turns. Therefore, the value
of the inductance will decrease near the self-resonant
frequency. So, if the DC value of the inductance is used in
the model, then the fitting capacitor would underestimated
the actual value.

This fact is explored in the model. With the aid of
electromagnetic simulators, the behaviour of a loss-less
inductor is calculated. Then, the equivalent inductance is
compared with the one of an electrical model composed of
an ideal inductor of value LDC and a capacitor in parallel.
The results are found in the Fig. 4, where the points
indicate the ratio between the former two equivalent
inductances. Moreover, on this plot the solid line shows
the same ratio but calculated with the former analytical
expression (6) when delay propagation is taken into
account.

Fig. 4. Ratio between the equivalent inductance value
calculated with an ideal inductor and calculated with
MoMemtum (dots) or with expression (6) (solid line).

Finally, to test the accuracy of the developed model, Fig.
5 compares it with the experimental results.

Fig. 5. Comparison between the model and the experimental
results (geometry: w=51 µm, p=75 µm, inner side=110 µm and
N=7).

III. CONCLUSIONS

This work presents relevant results of an exhaustive
analysis of integrated inductors. The main features of the
developed model are the ability to evaluate the equivalent
inductance, including the phase shift in the current, and the
frequency dependent series resistance (as a function of the
strip width and pitch of the inductor’s coil) by means of
analytical expressions derived from physical
considerations. Finally, the behavior near the self-resonant
frequency is accurately described through capacitor values
with physical meaning.

It has been also shown that electromagnetic simulators
are a valuable tool for developing scalable models. The
model can easily be implemented inside commercial
design environments to insert high quality inductors in the
design of oscillators, LNA and other MMIC-RFIC circuits.
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